INQUIRY ACROSS THE CONTENT AREAS: SCIENCE AND SOCIAL SCIENCE INQUIRY
Objectives

- What is Inquiry?
- Inquiry Process and Strategies
- Available Resources
I Thought Science Avoids Inquiry...

- NGSS specifically stayed away from using the term inquiry in the standards
 - Concerned it was a misused “buzz word”

- Scientific and Engineering Practices define what student inquiry should look like every day in the science classroom

- Engaging students in inquiry in science applies to the scientific process NOT the engineering process
 - Scientific is asking a question and researching or investigating to find the answer
 - Engineering is identify a problem and design a solution
 - Not every lesson has an engineering component but every unit should have an engineering component – engineering is an important component of NGSS but isn’t always part of every lesson
 - 2nd grade students learn about how water interacts with their environment within their unit they may notice problem of water under the swing and design a solution
What is Inquiry?

- Inquiry-based learning is a complex process where students attempt to convert information into useful knowledge
 - They do this by...
 - asking questions
 - finding resources to gather information to answer questions
 - interpreting the information
 - reporting the findings
 - reflecting upon their thinking
Why Inquiry?

- The impact of inquiry-based instruction on student learning was presented in a 2008 Edutopia article, *Powerful Learning: Studies Show Deep Understanding Derives from Collaborative Methods* by Brigid Barron and Linda Darling-Hammond which summarized a multitude of research that has been conducted on the subject. Barron and Darling-Hammond summarize research findings into several key points:

 A growing body of research has shown the following:

 - Students learn more deeply when they can apply classroom-gathered knowledge to real-world problems, and when they take part in projects that require sustained engagement and collaboration.

 - Active-learning practices have a more significant impact on student performance than any other variable, including student background and prior achievement.

 - Students are most successful when they are taught how to learn as well as what to learn.

The full text of Darling-Hammond and Barron’s article can be found at: https://www.edutopia.org/inquiry-project-learning-research
Why Inquiry?

- Components of inquiry are found across the standards of many subject areas:
 - Science and SS
 - ELA – weave strands together
 - Math – Practice Standards 1 and 3

- Aligns to Danielson
 - Components in Domains 1, 2, & 3 can all be addressed with the use of inquiry in the classroom
Real-World Example

As you watch:
Identify at least one key component necessary in the inquiry process.

http://goo.gl/kxyXC0
Inquiry Process

- There are many ways to plan for units of inquiry in the classroom, it’s not a one-size-fits-all approach!

- One possible instructional model that may be more geared toward science is the **5E Instructional Model for Science Inquiry**

Inquiry Process

- To help guide teachers in planning SS inquiries we developed the Illinois Social Science Inquiry Process

- 5 stages to guide students through the inquiry process in the classroom
 - Engage and Ask
 - Think Critically
 - Draw Conclusions
 - Communicate Findings
 - Reflect

- All stages are emphasizing things STUDENTS should be doing in the classroom!

- We’re going to use the stages in this process to discuss inquiry today
Engage and Ask

- What topic are we studying?
 - Should adhere to state mandates and lend itself to addressing multiple standards.

- What are the big questions I want my students to be able to answer at the end of the unit?
 - What are the main take-aways I need my kids to understand to address these standards?

- How will I engage or interest my students in this topic?
 - What will grab students’ attention and interest AND enable students to ask questions?
 - EXAMPLES: video, picture, artwork, guest speaker, book, poem, question, article, quote

- What questions do my students have about this topic?
 - What are my kids wondering about this topic?
 - Questions kids ask will give teacher insight into background knowledge.

- What questions are manageable within the unit?
 - Available resources and time
Engage and Ask: Strategies

- Question brainstorm
- KWL (and variations)
- Driving Question Board
- Question Formulation Technique (http://rightquestion.org/)
 - QFT Small Group Worksheet

Consider providing students with an image, quote, video/audio clip, or text excerpt to prompt their questioning.
Driving Question Board

- Gives students the opportunity to explore essential questions and allow for:
 - Making Connections
 - Allows students to share prior knowledge; Creates a coherent story from disconnected experiences; Connects small ideas to essential question; Serves as visual reminder
 - Getting Organized
 - Assists in connecting and synthesizing ideas; Similar to concept maps
 - Scaffolding Question-Asking
 - Anchoring phenomena serves as a trigger for question generation
 - Sorting questions into categories creates focus, helps connect them to the main idea and allows them to vary the type and level of questions asked
 - Students can ask questions at higher levels of complexity
 - Imparting Ownership
 - Students develop the questions and investigations, creating a sense of ownership over the process and learning
 - DQBs vary between classes to reflect the learning of the groups

Fortus et al 2008 - paper on DQBs
Think Critically

- Reading and understanding information
 - Incorporating *multiple* sources to gather information

- Analyzing sources, information, or data
 - Conducting investigations
 - Critically analyze sources
 - How do I know which sources are valid or reliable? Is there implicit or apparent bias in the sources?

- Conducting Investigations
 - Testing theories, revising, retesting

- Using progressive graphic organizers, journaling, writing or drawing to organize initial thoughts

- Using collaboration or discussion techniques to further refine thinking
Think Critically: Strategies

Some strategies used to help students think critically can actually propel them through the rest of the inquiry process.

- **Textbook Activity Guide (TAG)** – (adapted from Janet Allen author of Yellow Brick Roads to Reading)
 - about TAG

- **Read, Rate, Reread** – Kelly Gallagher

- **Collaboration and Discussion Techniques**
 - Think Pair Share (and variations)
 - Structured Academic Controversy
 - Back Pocket Questions – general and math
 - Sentence Stems
 - Sketch to Stretch
Text Activity Guide Tips:

- Determine what is most important
- Use the Inquiry Process Guide
- Scaffold instruction

- Increase the amount students read in a single task, start with short passages and gradually increase

- Increase the complexity/difficulty
 - From beginning of the guide to the end of the guide
 - Beginning of the year to the end of the year

- Some skills might be practiced with a partner near the beginning of the year but expected independently later in the year. (Summarizing, synthesizing, analyzing, etc..)
Draw Conclusions

- Answering big question(s) of unit
 - Addressing enduring understandings or main take-aways
- Synthesizing ideas to draw conclusions
- Supporting answers with information learned from sources or investigations
Draw Conclusions: Strategies

- **Collaboration and Discussion Techniques**
 - Sentence Stems
 - Numbered heads/Talking Chips
 - Think Pair Share (and variations)
 - Structured Academic Controversy
 - Back Pocket Questions – general and math

- **Other Strategies**
 - Claim, Evidence, Reasoning (CER)
 - Claim – What do you know? (ex: Air is matter.)
 - Evidence – How do you know that? (ex: As we added air to the basketball, the mass of the basketball increased.)
 - Reasoning – Why does your evidence support your claim? (ex: This shows that air has mass which is one of the characteristics of matter.)
 - Together these build an explanation.
 - Written Response
 - Journaling, Graphic Organizer, Short Responses
 - Textbook Activity Guide - (adapted from Janet Allen author of Yellow Brick Roads to Reading)
 - about TAG
 - Article of the Week – from Kelly Gallagher
 - Kelly Gallagher’s AOW

Collaboration and Discussion Techniques can help students refine their thinking but students need opportunities to explain their thinking independently even after group discussion or deliberation.
Claim, Evidence, Reasoning (CER)

https://www.youtube.com/watch?v=faSAI0Anf9E
https://www.youtube.com/watch?v=5KKsLuRPsU
http://www.activatelearning.com/claim-evidence-reasoning/
teacher, author, speaker, coach—dedicated to helping students become better readers and writers

Vale MS in Vale, OR sample AOW
Communicate Findings

- What methods will be used for students to demonstrate what they have learned?
 - Answer the overall question(s) of the unit
 - This can be the unit assessment as long as it connects to overall unit objectives

- Who will this learning be shared with?
 - Engagement is enhanced when students can share what has been learned beyond the classroom
 - Take informed action (advocate) based upon what students have learned if/when appropriate
Communicate Findings: Strategies

- **Writing**
 - Can use CER to support claims in written work

- **Product/project**
 - Poster
 - Flyer
 - Brochure
 - Cartoon/Comic Strip
 - Tic-Tac-Toe/Choice Board

- **Presentation/Speech**
 - PPT
 - Commercial
 - Rap
 - Play
Common Craft and Museum Box Videos

https://www.youtube.com/watch?v=4iHLEY9etWg

https://www.youtube.com/watch?v=cj5Y_4XIMo&t=54s

Common Craft Video
https://www.commoncraft.com/

Museum Box
http://museumbox.e2bn.org/
Reflect

- How has students’ thinking changed based on what they have learned through the inquiry process?
 - Beliefs
 - Behaviors
 - Students and teachers reflect on experience with the inquiry process
Reflect: Strategies

- Collaboration and Discussion Techniques
 - Think Pair Share (and variations)
 - 3-2-1 (and variations)
 - Sentence Stems
 - MRI - summarize the Main idea; Reflect on the meaning; what are the Implications for my life?

- Independent Reflections
 - Exit Note
 - Response Questions: How might you look at _____ differently now? How might you respond differently now?
 - Suggestion for improving the inquiry process in the future
 - 3-2-1 (and variations)
 - Sketch
AVAILABLE RESOURCES
Science Resources

- **The Inquiry Project** is a research project exploring the use of inquiry and investigative practices to deepen student understanding of matter for students in grades 3-5.
- **Talk Science** is web-based professional development to specifically build educators skills for productive discussion in the science classroom.
- **SOLE**: Self Organized Learning Environment
 - Big Question, Investigate, Review
Social Science Resources

- Illinois Social Science in Action website
 - http://www.ilsocialscienceinaction.org/ (is also linked from IL Classrooms in Action)

- Resources:
 - **Illinois Resources** – all resources created by Content Specialists specifically aligned to the Illinois Social Science Standards
 - **Resource Website** – external websites that may be helpful to support standards implementation in the classroom (many may be aligned to C3 Framework)
Newly-Released Illinois-Specific Social Science Resources

- Social Science Inquiry Graphics K-12
 - Intention is to support teachers with the goal of engaging students in the inquiry process
 - Statements include suggested steps for each stage of the inquiry process
 - Select grade level from: http://www.ilsocialscienceinaction.org/illinois-resources.html
Katie Elvidge – Social Science Content Specialist
- kelvidge@isbe.net
- www.ilclassroomsinaction.org
 - Resources to support all content areas
 - www.ilsocialscienceinaction.org
 - Illinois Resources – all resources created by Content Specialists specifically aligned to the Illinois Social Science Standards
 - Resource Website – external websites that may be helpful to support standards implementation in the classroom (many may be aligned to C3 Framework)

Jeanine Sheppard – Math/Science Content Specialist
- jsheppa@ilstu.edu

Please provide some brief feedback by turning in the half sheet before you leave. Thank you!!